Network Management It's Not Just Status Monitoring Any More

Raj K. Deshpande

IPNS Network Operation Solutions Broadband Communication Sector Motorola Inc.

presented at: SCTE Chicago Chapter Seminar Series September 21, 2000

Company Confidential

MSO Operations Challenges

Company Confidential

The Cable Video Service

Home Configurations

The Cable Data Service

The Cable Telephone Service

The "Box" View

Yesterday's Management Challenge

Today's Management Challenge

MOTOROLA Broadband Communications Sector

Tomorrow's Management Challenge

Addressing Today's Management Challenges

MOTOROLA Broadband Communications Sector

SCTE Chicago Seminar September/21/20000 Addressing Tomorrow's Management Challenges

What is OSS for Cable Networks?

Management Scope

- Network Management
 - Configure and Activate Network Elements
 - Monitor and perform pro-active maintenance of the Network Elements
 - Provide standard open interfaces for multi-vendor, multi-solution integrated network management.
 - Provide open interfaces to allow necessary instrumentation of Network Elements to enable end-customer service activation and modification
 - Provide applications that enable the customer to enhance the network by add/modify of Network Elements
- Service Management
 - Provide applications for service activation integrate with customer work flow management solution
 - Provide applications for reliable billing integrate with customer billing and service assurance applications.
 - Provide applications that enable simple, self, single-click service activation

Key OSS Functions

Transmission headend

MOTOROLA

Broadband Communications Sector

Management Functions

Configuration

- Service Activation
- Network Provisioning
- Resource Management

Fault

- Fault Reporting
- Correlation/Summarization

Performance

- Service Level Agreements
- Performance Monitoring

Security

- Network Security
- Access Control
- Key Management

Accounting

- Usage Monitoring
- Transaction Records

How do we approach the problem space ? Example OSS solution

OSS Reference Architecture

Motorola Provisioning Solution

- Supports Rapid Deployment
 - Easily integrated into existing Higher Level OSS architectures
 - Web-based interface (either CSR or consumer)
- Customer self provisioning
 - Secure subscriber interface
 - Supports retail model
 - Self-service upgrades and addition of new services
 - Impulse and on-demand services
- Fully scalable
 - Supports multiple BTI EMSs, IPDTs, DHCP and TFTP servers
 - Supports DNS for naming individual BTIs

HFC Access Network Manager

- Configuration management
 - Network element configuration tools
 - Interface with provisioning and inventory systems
- Fault management
 - Alarm management and correlation
- Performance management
 - Collect and process performance related statistics
 - Track performance versus SLA's and QoS business commitments
- Accounting management
 - Collect usage / transaction based statistics; forward to billing systems
- Security management
 - Ensure information is shared with the appropriate users/systems

Network Resource Manager

- Resources
 - Hardware
 - Plant
 - Headend
 - Spectrum
 - Upstream
 - Downstream
 - Network segments
 - Channel bandwidth
 - DOCSIS
 - MPEG
 - Special purpose
 - IP addresses

Network Resource Manager

- Planning
 - Plan from forecast or utilization data
 - Integrated planning of network layers
 - Master plan for all critical resources
 - Consistency checking across/among layers
- Deployment
 - Coordinated configuration parameters across network devices
- Monitoring
 - Utilization and performance statistic collection
 - Alarms
 - Reports

Address Management Server

- Rapidly design & deploy IP infrastructure
 - Full featured GUI easy management and troubleshooting
- Create and manage large domains
 - Diagnostic tools including logging of all DHCP operations/events
 - Support address pools on multiple subnets
- Standards based and extensible
 - Compliant with relevant RFC's: 1542, 2131, 2132, 1034, 1035, 2136, 1995, 1996
 - Name Synchronization between DHCP and DNS
 - Supports Redundant DHCP servers
 - Extensibility providing the ability to write custom define extensions to the DCHP process
 - Support of Custom DHCP options
 - Client class support to differentiate services to clients

PacketCable Security Manager

- Provides authentication and key management services to maintain integrity of PacketCable security mechanisms
- Kerberos Distribution Center (KDC) supporting public key initialization (PKINIT)
 - Authentication server (AS)
 - Validates identity of BTIs
 - Ticket granting server (TGS)
 - Provides *ticket* to BTIs for signaling with call agents/IPDTs
 - Interacts with provisioning servers and call agents
 - Initial distribution plus periodic renewal

CPE Manager

- Device Configuration
 - MTA / CM downloadable configurations
- Life-test polling
 - 20k devices each 15 min.
- Event Viewer (trap / Inform)
- Device Viewer / Editor
- Topology
 - Device Discovery CMTS, BTI, CM
 - Node representation
- Supports PacketCable MTA MIBs
- Web based Client

CMTS Manager

- DCM EMS (Voice & Data)
- IFM EMS
- RFM EMS
- Functionality
 - Polling (configurable)
 - Data Collectors
 - Trap collection and filters
 - Device viewer / editor
 - Ping and Loop back tests
 - Web based clients
 - Trap forwarding to HFC ANM

HFC Plant Management with the Broadband Test Point

Advanced Services and the HFC Network

- HFC networks were designed primarily to support the distribution of broadcast media, specifically video.
- HFC networks have several "interesting" characteristics, namely:
 - HFC network designs rely on a "Shared Network" with many single points of failure. A single failure could result in loss of service to "many" customers.
 - Historically the majority of the HFC network is NOT "managed"
 - HFC designs include a lot of return path "combining". Potentially adverse condition relative to return path ingress.
- Comprehensive network management and modified plant designs can provide five nines of availability.

√ Ⅲ The HFC Network was Not ideally Architected to support (III) Telephony **IP / PSTN NETWORK** Older designs rely on SHARED resources which Ô can greatly impact network and service availability. $\langle \square \rangle$ • Specific failures in a SHARED resource in an older network in a typical forward-path will impact up to Ī 500 active POTs calls¹ and 4000 POTS lines² in an environment with 18,000 homes-passed. •Forward Path HFC-network 'Event' • Historical solutions leave 99% of the forward-path •RF Bandwidth Degradation HFC shared resources unmanaged. •Fiber-optic Equipment Failure •RF Equipment Failure Hybrid Interconnection Failure Fiber-Coax Network $\hat{\Phi}$

Note 1. High-Day Busy Hour = 14% active phones Note 2: At 20% penetration rate

The HFC Access-Network Was **Not Architected for Telephony** •Return path network events are exacerbated by the use of COMBINING resources. **IP / PSTN** •Certain failures in a SINGLE, UNSHARED **NETWORK** resource in a typical return path will impact all 500 active POTs calls, 4,000 POTS lines in an **√**⊞` environment with 20,000 homes-passed. •Any wired home with or without a terminal device is effectively a shared-resource on the HFC network with potential to impact all 500 active POTs calls and 4,000 POTS lines •Current solutions leave the return path effectively unmanaged. •Return Path HFC-network 'Event' •RF Noise Hybrid Interconnection Failure Fiber-Coax Network OTOROLA Note 1: At 20% penetration rate

Broadband Communications Sector

Note 2. High-Day Busy Hour = 14% active phones

Broadband Test Point

- Resides on strands or in nodes
- Correlates DOCSIS MAC and end device responses to identify downstream devices for topology discovery
- Measures upstream and downstream digital performance
- Measures upstream "quiet" noise conditions

Broadband Test Point

- Automatically discovers and locates all DOCSIS devices (CM, BTI, DCT5000s and other BTPs)
 - Enables segmentation of network via autodiscovery
 - Supports mass deployments of DOCSIS and PacketCable devices
- Proactive ingress management
 - Find ingress source before it affects service levels
 - Integral part of Motorola's bandwidth management solution
- Data reduction
 - Automates evaluation of spectrum analysis plots
 - Actionable alarms: alarms are limited to high confidence events, declared events are linked to a physical location
- May be used with any plant design, not just "Motorola" plants

Thank You

